Can Tuberculosis Be Eradicated?

Richard E. Chaisson, MD Center for AIDS Research Center for TB Research Johns Hopkins University

Eradication, elimination or control?

- Eradication complete absence of the disease from the planet.
- Elimination ending the disease as a public health problem.
 - Defined as TB incidence of <1 per million and TB deaths
 <1 per 10 million
- Control making it a much smaller problem than it currently is.

Global Burden of Disease Estimates of Incidence, Prevalence and Mortality from HIV and TB

1.3 million deaths in 2012

CJL Murray et al., Lancet, Sept 12, 2014

Tuberculosis

The World in 2 Acts "Controlled" and Uncontrolled TB

Dye, et al., Ann Rev Publ Health 2013

Tools to Control of Tuberculosis Why hasn't TB already been eliminated?

- Global failure to apply biomedical tools effectively
 - Weaknesses in health systems
- Inadequacies of existing tools
 - Smear detection of cases ~50%
 - Adherence to regimens is poor
 - BCG vaccine does not prevent adult TB
- Changing epidemiological situation
 - HIV epidemic
 - MDR
- Global policies that lack understanding of best epidemiologic approaches

The Path to Elimination

Dye, et al., Ann Rev Publ Health 2013

Drivers of tuberculosis

- Population level drivers
 - Force of infection (transmission)
 - Crowding and mixing
 - Inadequate diagnostic/treatment services
 - (Drug resistance)
- Individual level drivers
 - HIV/immunosupression
 - Diabetes
 - Smoking
 - Silicosis
 - Malnutrition

TB Case Detection: Mind the Gap

Global trends in case notification (black) and estimated TB incidence (green) rates, 1990–2012. Case notifications include new and relapse cases (all forms).

Tuberculosis in South African Adults Dying at Home without a Medical Diagnosis

- Adults dying at home, no diagnosis
- (18% excluded, known to have TB)
- Consent from family
- Bilateral axillary Tru-Cut biopsy
- Modified bronchoalveolar lavage

Post-Mortem Diagnosis	N=85 (%)		
TB on ≥1 lab test	29 (34.1)		
TB on ≥2 lab tests	22 (25.9)		
Biopsy			
Histology	16/29 (55.2)		
AFB positive (ZN)	13/16 (81.3)		
Xpert	13/29 (44.8)		
MGIT	18/29 (62.1)		
BAL			
AFB+ (Auramine)	9/29 (31.0)		
Xpert	20/29 (69.0)		
MGIT	19/29 (65.5)		

Martinson et al., CROI 2013

Estimated HIV prevalence among new TB cases, 2012

WHO Global Tuberculosis Report 2013

TB Incidence and Prevalence of Diabetes, 2010 and 2030

Dooley and Chaisson, Lancet Infect Dis, 2009; 9: 737–46

Global Prevalence of Tobacco Smoking by Men

From: Mackay J, Ericksen M. The tobacco atlas. WHO, Geneva, Switzerland (2002).

Body Mass Index with Risk of Tuberculosis and Death in HIV+ Patients in Soweto, South Africa

Hanrahan et al., AIDS 2010

Population-level Control Strategies for TB

Population-level Control Strategies for TB

Modeled approaches to reaching TB elimination

Control of TB: Historical Precedents

• Remembering how it <u>was</u> done!

Impact of DOT and Rigorous TB Contorl in Baltimore TB Rates: Six US Cities with Highest TB Incidence, 1978-92

Chaulk PC, Moore-Rice K, Rizzo T, Chaisson RE, JAMA 1995, 274:945-951

Keys to success in reducing TB in Baltimore

- Essentially complete case-finding
- Community-based directly observed therapy
- High rates of contact evaluation
- High rates of completion of IPT for contacts
- Outreach program to drug treatment centers and injection drug users
- 20 years later, Baltimore's rate = national rate (~4-5 cases/100,000), 90% reduction

- 80+% in foreign-born individuals

DOTS Results in TB Incidence Decline

DOTS Results in TB Incidence Decline: The Case of Peru

Adapted from Suarez et al., J Infect Dis. 2001; 184:473-8.

CTLT

George W. Comstock and the Conquest of Tuberculosis in Alaskan Eskimos

ALASKA

INH Preventive Therapy in an Undeveloped Area: The Bethel Study

- the Bethel [trial] was designed to test the prophylactic usefulness of isoniazid among entire communities in an undeveloped area with a serious tuberculosis problem."
- 28 villages, ~7000 residents
- Pertinent features of the Bethel area in 1957:
 - High rate of poverty
 - 2% prevalence of active TB
 - Annual risk of TB infection ~8 percent
 - Average household size 6, 2/3rd of homes 1 room
 - "a climate that discourages ventilation"

GW Comstock, Isoniazid in an Undeveloped Area. Am Rev Respir Dis 1962;86:810

TB Rates in the 6 Years After Treatment with INH or Placebo in the Bethel Trial

Cumulative reduction $5.1\% \rightarrow 2.1\% = 60\%$

GW Comstock, Ferebee SH, Hammes LM. Am Rev Respir Dis 1967;95:935-43.

Tuberculosis in Alaska, 1970: The Continued Decline of the Tuberculosis Epidemic

Prevalence of Positive Skin Test Reactions in Children, 1949-1970

Kaplan GJ, Fraser RI, Comstock GW. ARRD 1972,105:920

Interventions and impact: Bethel 1950s & 60s Annual Risk of Infection (%) and incidence rates per 100,000

A Platform for Controlling Global Tuberculosis

- **FIND** the TB that is there
 - Passive case detection is not sufficient
 - Intensified (active case finding essential)
 - Improved diagnostic technologies
- **TREAT** the TB that is found
 - Treatment success is unacceptably low
 - Treatment for M/XDR is abysmal
 - New drugs and treatment strategies urgently needed
- **PREVENT** the TB that hasn't occurred yet
 - Preventive therapy essential for high risk populations
 - Infection (transmission) control critical
 - Control susceptibility (antiretrovirals, diabetes control)
 - New vaccine

Preventive Interventions in TB

TB and HIV vaccines obvious additional strategies, but not currently available

The March of Diagnostic Technology

LED Microscopy*

 Line probe assays for MDR

 Urine LAM dipstick**

GeneXpert TB/RIF*

*BSL-3 not required ** Point of care test

Campaigns to detect prevalent, untreated TB cases?

Rocinha *favela*, Rio de Janeiro

A cluster-randomized trial of door-to-door active case finding for TB in Rio de Janeiro (14 neighborhoods, 58,587 residents)

	Household Case Finding	Pamphlet Only	Rate ratio (95% CI)
TB incidence during	9.34/1000 py	6.04/1000 py	1.55 (1.10, 1.99)

Miller et al., IJTLD 2010

TB in Rocinha before and after intervention – 16% decline in incidence

Soares et al., Int J TB Lung Dis, 2013, 17:1581-6.

DETECTB Community-Based TB Case Finding in Harare, Zimbabwe

- Multiple rounds of ACF in community
 - Door to door vs mobile vans
- Findings after 6 rounds:
 - 59% reduction in HIV- TB prevalence
 - 22% reduction in HIV+ TB prevalence

Corbett et al. Lancet 2010

Community-Randomized Trial of Household Contact Evaulation and Preventive Therapy (DOTS-A) vs DOTS in Rio de Janeiro

Cluster-randomized trial ZAMISTAR of TB control interventions

TB/HIV at the clinic: 257,698

Enhanced Case Finding: 148,090

Household: 257,729

ECF & Household: 299,138

H. Ayles, et al., Lancet, 2013

Impact of Household Contact Evaluations for New TB Patients or Community Active TB Case (ECF) Finding in High Burden Areas

Impact of Improving Case Finding and Treatment on Tuberculosis Control: A Mathematical Model

Dowdy and Chaisson, Bull WHO 2009, 87:296–304

Preventive Interventions in TB Impact of ART on TB Incidence in HIV+ People

	A	ART		ntrol		
	TB cases	PY at risk	TB cases	PY at risk	HK (95% CI)	
All baseline CD4 cou	unts					
Badri (2002) *	9	375.1	82	848.2	0.19 (0.09 - 0.38)	
Cohen (2011) *, †	17	1661.9	33	1641.8	0.51 (0.28 - 0.91)	
Golub (2007)	221	11627	155	3865	0.41 (0.31 - 0.54)	-
Golub (2009)	44	952	200	2815	0.36 (0.25 - 0.51)	-
Jerene (2006)	6	162.6	9	80.9	0.11 (0.03 - 0.48)	
Lannoy (2008)	-	-	-	-	0.10 (0.02 - 0.45)	
Miranda (2007)	-	-	-	-	0.20 (0.10 - 0.60)	
Samandari (2011) †	-	-	-	-	0.33 (0.11 - 0.94)	
Santoro-Lopes (2002)) 1	-	42	-	0.19 (0.03 - 1.09)	
Severe (2010) †	18	-	36	-	0.50 (0.28 - 0.83)	
Zhou (2009)	57	5186	40	985	0.40 (0.26 - 0.61)	
All studies					0.35 (0.28 - 0.44)	←
Effect [.] 7 = 9.19 n < 0	001. Heteror	$reneity \cdot l^2 = 3$	1% (22% - 4	1% n = 0.15	51	

Reduce Susceptibility

A.B Suthar, et al. PLoS Medicine, 2012

TB rates in relation to ART scale up in rural Malawi

Zachariah, et al., 2011, Int J Tuberc Lung Dis

Preventive Interventions in TB

The THRio Study: Implementation of TB Screening and INH Preventive Therapy in HIV Clinics

	Outcome	Cases	Crude HR (95% Cl)	p-value	Adjusted HR (95% CI)	p-value
Intent To Treat	TB	475	0.87 (0.69-1.10)	0.24	0.73 (0.54-0.99)	0.04
Treat	TB or Death	1313	0.76 (0.66-0.87)	<0.001	0.69 (0.57-0.83)	<0.001
Per- protocol (Stayers)	TB	399	0.43 (0.31-0.58)	<0.001	0.42 (0.31-0.58)	<0.001
	TB or Death	1055	0.50 (0.41-0.60)	<0.001	0.50 (0.41-0.60)	<0.001

Stayers – per-protocol - Among those remaining in clinic contact (Patients censored after one year without a clinic contact)

Durovni et al., Lancet Infect Dis. 2013;10:852-8

Consortium to Respond Effectively to the AIDS 🛡 TB Epidemic

Long term efficacy of IPT in HIV-infected persons in a medium TB burden setting: Rio de Janeiro

(Golub, CID, 2014, In press)

5-Year Impact of IPT for HIV+ Patients in Rio de Janeiro on Population TB Incidence

(Annual rate of IPT delivery: 20%/year to fit study data)

Dowdy, et al., JAIDS 2014. 66:552-8.

6-month versus 36-month isoniazid preventive treatment for tuberculosis in adults with HIV infection in Botswana: a randomised, double-blind, placebo-controlled trial

Taraz Samandari, Tefera B Agizew, Samba Nyirenda, Zegabriel Tedla, Thabisa Sibanda, Nong Shang, Barudi Mosimaneotsile, Oaitse I Motsamai, Lorna Bozeman, Margarett K Davis, Elizabeth A Talbot, Themba L Moeti, Howard J Moffat, Peter H Kilmarx, Kenneth G Castro, Charles D Wells

Thibela TB: what will it take to control TB in gold mines?

Reid, et al., Int J. Tuberc Lung Dis. 2014. In press

Short-course, sterilizing regimen for latent TB: Rifapentine/INH x 12 weekly doses vs INH x 9 mos. Cumulative TB Rates

Log-rank P-value: 0.06

Preventive Interventions in TB

Can TB be eliminated? Probably not by 2050.

Can TB be controlled? Yes, with investment in epidemiologically sound strategies and tools.

Strategies and tools to control TB

- Improved diagnostics († case finding, transmission)
 - Better tests
 - Campaigns to find prevalent cases (e.g., contacts)
- Improved therapy († treatment completion)
 - Shorter duration regimens to assure adherence
 - New drugs for MDR/XDR TB
- Prevention
 - INH or novel preventive therapy
 - Reduction of susceptibility (ART, diabetes, smoking)
 - Effective vaccine
- Combination of approaches essential

Tuberculosis: The Nemean Lion

<u>Colleagues</u> Larry Moulton Tim Sterling **Neil Martinson Jacques Grosset Eric Nuermberger** Jonathan Golub David Dowdy Solange Cavalcante Betina Durovni Gavin Churchyard Alison Grant Katherine Fielding and many more!

Acknowledgements Funders: NIDA NIAID/NIH Fogarty Int'l Center CDC **FDA Bill and Melinda Gates Foundation**

CENTER FOR

IOHNS HOPKINS UNIVERSITY

